Le cadeau du père Noël est arrivé : Ariane V s’est envolée le 25 décembre 2021

Ariane V (VA 256) s’est envolée à Noël de Kourou, Guyane française, le 25 décembre à 13h20 (Suisse). Photo : ESA / CNES

The James Webb Space Telescope was successfully deployed into the intended orbit approximately 28 minutes after being launched by an Ariane 5 launch vehicle (Ariane Flight VA256) from Ariane Launch Complex No. 3 (ELA 3) at Guiana Space Centre in Kourou, French Guiana, on 25 December 2021, at 12:20 UTC (09:20 local time, 07:20 EST, 13:20 CET).

Some statistics 

  • 256th launch of an Ariane rocket since 1979
  • 338th Arianespace mission
  • 112th launch of an Ariane 5 rocket since 1996
  • 85th satellite for ESA launched by Arianespace
  • 79th launch of an Ariane 5 ECA rocket since 2002
  • 87th flight of a Vulcain 2 engine
  • 111th flight of an HM7B engine
  • 2nd Ariane 5 launch targeting L2 Lagrange point
  • 7th launch from the Guiana Space Center in 2021
  • 3rd Ariane 5 launch in 2021

Sur la radio RFJ
Mon passage à La Matinale du 25 décembre 2021

Coordination scientifique zurichoise pour l’instrument MIRI

Test des instruments scientifiques. Les trois unités du proche infrarouge ont été refroidies à environ -233°C, tandis que l’instrument du moyen infrarouge a atteint une température encore plus basse de -266°C, pour un total de 116 jours. – Photo : NASA/Goddard/C. Gunn

[Courrendlin, December 25, 2021, rke, English below] Dans le cadre du consortium de l’instrument MIRI, l’EPFZ coordonne et chapeaute l’assemblage, les tests et l’intégration de l’appareil infrarouge MIRI. Et ce, grâce aux deux chercheurs suisses Simon Lilly et le Dr Adrian Glauser.

L’Institut de physique et d’astrophysique des particules (IPA) du département de physique de L’École polytechnique fédérale de Zurich (MIRI) fait partie du consortium MIRI (Mid-Infrared Instrument) du télescope spatial James Webb. MIRI est développé conjointement par les États-Unis et un consortium européen (CE) financé par des fonds nationaux, sous l’égide de l’Agence spatiale européenne. Le CE est responsable de l’optique, du banc optique, de l’assemblage, de l’intégration et des tests de l’instrument MIRI.  MIRI sera refroidi à 7 K et sera la partie la plus froide du JWST. Cette gamme de longueurs d’onde, associée à la sensibilité inédite du JWST, ouvrira une nouvelle ère de la recherche en astrophysique.

Transféré à l’EPFZ en 2008
Initialement, la contribution suisse était dirigée par le Dr Alexander Zehnder à l’Institut Paul Scherrer (PSI). En 2008, le projet a été transféré à l’EPFZ. Depuis 2007, le Dr Adrian Glauser est le chef de projet national suisse pour la participation au consortium de l’instrument MIRI pour le JWST et supervise les contributions des partenaires industriels suisses, RUAG Aerospace et SYDERAL. Il est soutenu dans son travail par le professeur Polychronis Patapis. Le professeur Manuel Guedel (Université de Vienne et professeur associé à l’EPFZ) est le co-chercheur principal suisse, le professeur Simon Lilly et le Dr Adrian Glauser sont les co-chercheurs suisses du consortium MIRI, respectivement.

MIRI est un instrument (imageur et spectromètre) de l’extrême puisqu’il collecte les rayonnements les plus longs (entre 5 et 29 microns) donc les moins chauds. Il est refroidi en dessous de la température déjà très froide de l’ensemble du télescope, jusqu’à -266°C par un liquide cryogénique, et il est équipé d’un coronographe (par « masque de phase ») qui permet d’éviter que l’image froide soit inondée par la lumière de la source lumineuse la plus proche (le plus souvent l’étoile de la planète visée). L’objet est cosmologique, recherche de la « première lumière » au sortir des « âges sombres », et astrophysiques, la formation des étoiles et la formation des systèmes planétaires.

Pourquoi le Webb observe-t-il dans l’infrarouge ?
En observant dans l’infrarouge, le Webb révélera tout un univers jusque là caché à nos yeux : des étoiles et des systèmes planétaires se formant dans des nuages de poussière et la première lumière des premières étoiles et galaxies jamais formées.

Pierre Brisson

Merveille technologique
Lire l’excellent article de Bierre Brisson président de la Mars Society Switzerland, membre du comité directeur de l’Association Planète Mars (France), économiste de formation (University of Virginia), ancien banquier d’entreprises de profession, planétologue depuis toujours.

Les autres contributions suisses

Contributeurs au JWST : 8 Suisses dans le coup !

Au nombre de 306 dans le monde dont 153 américains, 14 canadiens et 173 européens dont 8 suisses :

  • Syderal SA, Neuchâtel
  • Swiss Space Office, Berne
  • RUAG, Zurich
  • Physikalisches Institut, Berne
  • Paul Scherrer Institute, Villigen
  • Observatoire de Genève
  • ETH, Institute for Particle Physics and Astrophysics, Zurich
  • APCO Technologies SA, Aigle

La participation Suisse concerne surtout MIRI, l’instrument le plus délicat du JWST puisque c’est celui qui observera dans l’environnement le plus froid.

ZURICH. Contamination Control Cover. Ce couvercle, développé par RUAG Space, protégera MIRI contre la contamination externe pendant la phase de refroidissement des tests et après le lancement.
En outre, ce cryo-mécanisme fait office d’obturateur optique pour l’instrument afin de permettre l’étalonnage à bord et de protéger les détecteurs contre les objets brillants (photo ci-dessous)

NEUCHÂTEL. Cryo-câbles. Ces câbles, développés par l’entreprise neuchâteloise SYDERAL SA sont constitués de 250 fils électriques qui relient les mécanismes cryogéniques, les sources d’étalonnage et les capteurs de température du banc optique froid avec l’électronique chaude (Photo ci-dessous)

Zurich scientific coordination for the MIRI instrument

Adrian Glauser with a model of the James Webb Space Telescope, which will begin its journey into space in the next few days. (Image: ETH Zurich/D-​Phys/Heidi Hostettler)

As part of the MIRI consortium, ETH Zurich is coordinating and leading the assembly, testing and integration of the MIRI infrared instrument. This is thanks to two Swiss researchers Simon Lilly and Dr Adrian Glauser

The Institute for Particle Physics and Astrophysics (IPA) at the ETH Zürich Department of Physics is part of the James Webb Space telescope Mid-​Infrared Instrument (MIRI)call_made consortium. MIRI is jointly developed by the USA and a nationally funded European Consortium (EC) under the auspices of the European Space Agency. The EC is responsible for the optics, optical bench, and assembly, integration, and test of the MIRI instrument. 

The Mid Infrared Instrument (MIRI) is one of the four science instruments on JWST and the only one which covers the poorly explored wavelength ranges from 5 μm to 28 μm. Therefore, MIRI will be cooled at 7 K and is the coldest part in the JWST. This wavelength range combined with the border breaking sensitivity of JWST will initiate a new age of astrophysical research.

Initially, the Swiss contribution was led by Dr. Alexander Zehnder at the Paul Scherrer Institute (PSI). In 2008, the project was transferred to ETH Zurich. Since 2007, Dr. Adrian Glauser serves at Swiss National Project Lead for participation in the MIRI Instrument Consortium for the JWST and oversees the contributions of the Swiss industry partners, RUAG Aerospacecall_made and SYDERAL SAcall_made. He is supported in his work by Polychronis Patapis. Prof. Manuel Guedel (University of Vienna and Associate Professor at ETH Zurich) serves as the Swiss co-​Principle Investigator, Prof. Simon Lilly and Dr. Adrian Glauser as Swiss co-​Investigators for the MIRI Consortium, respectively.

Swiss industry contribution

Contamination Control Cover on its mechanical support bracket manufactured by RUAG Aerospace (Image: MIRI)
  • Contamination Control Cover. The cover, developed by RUAG Aerospacecall_made, will protect MIRI against external contamination during the cooldown phase of the tests and after the launch. Additionally, this cryo-​mechanism acts as an optical shutter for the instrument to allow on-board calibration and to protect the detectors against bright objects.

  • NEUCHÂTEL. Cryo-​Cables. These cables, developed by SYDERAL SAcall_made consist of 250 electrical wires which connect the cryogenic mechanisms, calibration sources and temperature sensors of the cold optical bench with the warm electronics.
Cryotest facility at PSI equipped with the SYDERAL cables ready for cryogenic performance testing (Image: MIRI)

JWST – un télescope sanglé sur un siège suisse

Les campagnes de tests cryogéniques et sous vide du spectrographe proche infrarouge (NIRSpec) de WST ont été entreprises dans les installations de test de l’IABG en Allemagne. – Cette photo montre des ingénieurs de l’IABG soulevant le couvercle d’une caisse de transport contenant NIRSpec. Les ressorts, dans des sacs avec du ruban adhésif rouge, séparent les deux structures de transport APCO et isolent la caisse NIRSpec des vibrations et des chocs pendant le transport. – Le NIRSpec lui-même peut être vu enveloppé dans une isolation multicouche grise semblable à une feuille d’aluminium.

WST’s Near InfraRed Spectrograph (NIRSpec) cryogenic and vacuum test campaigns were undertaken at the IABG test facility in Germany. This shot shows engineers at IABG lifting the cover off a transport crate containing NIRSpec. The springs, in bags with red tape on them, separate the two APCO transport structures and isolate the NIRSpec box from vibrations and shock during transport. NIRSpec itself can be seen wrapped in grey foil-like multilayer insulation. – Photo : EADS Astrium

[Courrendlin, December 22, 2021, rke. English below.]
Après mes 33 lancements sur site au pied des fusées, je suis toujours bloqué en Suisse en raison de la Covid-19, je dois publier mes news au pays. Le lancement du JWST est toujours prévu ce samedi 25 décembre à 13h20 (heure suisse) de Kourou en Guyane française. Le père Noël fera-t-il un cadeau aux astronomes ?

Photo du haut : déploiement des coiffes suisse de RUAG laissant entrevoir le JWST – © ESA

Claude Nicollier (au centre) et Didier Manzoni à sa droite lors du show JWST le 17 décembre 2021 au Musée des transports de Lucerne. – Photo : rke

Interview exclusive (II)
avec Didier Manzoni
directeur de la division Espace d’APCO Technologies à Aigle

À travers son « Centre d’excellence » innovant, APCO Technologies réalise l’ensemble des moyens transversaux, des conteneurs de transport et des équipements de manutention des modules de propulsion ainsi que du composite d’un lanceur.  Qu’en est-il du JWST ? Interview avec Didier Manzoni, directeur d’APCO Technologies à Aigle.

Monsieur Manzoni, comment votre entreprise a-t-elle réussi à avoir le mandat de l’ESA pour ce projet de JWST ?
Comme on livre aussi bien des systèmes pour les satellites que pour les lanceurs, il allait de soi que nous puissions avoir un mandat pour le JWST. Comme c’est une mission de l’ESA et que notre pays y participe grâce au Swiss Space Office (SSO), on a décroché le contrat après avoir répondu à plusieurs appels d’offres.

APCO a fourni un adaptateur et un collier de serrage à très haute résistance utilisés pour sécuriser le JWST

Quel élément précisément de JWST avez-vous monté à Aigle ?
En ce qui concerne les moyens sols, nous avons livré un adaptateur et un collier de serrage à très haute résistance qui ont été utilisés pour sécuriser JWST durant tous ses essais et ses opérations au sol. Nous avons aussi livré des équipements permettant de monter l’instrument NIRSpec et enfin nous avons livré la structure d’interface de ce même instrument NIRspec. Il y aura de l’APCO Technologies en orbite sur JWST.

À Aigle, vous avez des halles de 16’000 m2, c’est très grand. Comment sont acheminés les éléments de satellite ou de lanceur ?
En camion par la route et l’autoroute. Le matériel est logé dans des conteneurs spécifiques escortés par la police. Par exemple, les conteneurs contenant les coiffes d’Ariane peuvent partir sur le Rhin et aller jusqu’à Brême. D’autres conteneurs partent pour Toulouse ou à Friedrichshafen chez Airbus ou à Cannes chez Thales. Le transport final d’un satellite se fait généralement par avion-transport jusqu’à Kourou.

Quelle difficulté pouvez-vous rencontrer lors du transport de l’un de vos satellites ?
On a des spécifications qui indiquent les efforts qui doivent être appliqués pendant le voyage en avion, dans le bateau et sur les routes. On doit s’assurer qu’il n’y aura aucun problème durant toutes les étapes du transport. Soit entre APCO et le maître d’œuvre (Airbus, Thales,…), soit de l’endroit où le satellite est terminé jusqu’à Kourou.

Après JWST, qu’avez-vous dans le pipeline… quels mandats ?
Le plus gros projet actuel, c’est Ariane 6. On a livré tous les moyens sols importants pour Ariane Group et pour le Centre National d’Études Spatiales (CNES). On livre les parties hautes et basses des moteurs auxiliaires.
Pour garantir des cadences de production élevées, nous avons spécialement développé et déployé des compétences « Industrie 4.0 » en investissant dans un tout nouvel atelier de production pour fabriquer des lots importants de sous-ensembles pour le lanceur Ariane 6.Nous avons aussi livré des équipements permettant de monter l’instrument NIRSpec et enfin nous avons livré la structure d’interface

D’autres projets en vue ?
Nous sommes aussi en charge du sous-système structures de plusieurs missions du programme Copernicus et de missions scientifiques ainsi que de projets commerciaux

JWST’s Near InfraRed Spectrograph (NIRSpec).  © Airbus Defence and Space GmbH

NIRSPEC – LE SPECTROGRAPHE PROCHE INFRAROUGE SUR JWST
L’objectif scientifique principal de NIRSpec est de permettre de grands relevés spectroscopiques d’objets astronomiques, avec un accent particulier sur l’étude des galaxies lointaines. Cet objectif a présidé à la conception de ce spectrographe multi-objets, capable de mesurer simultanément les spectres de 200 objets dans un champ de vision de 3,4 minutes d’arc × 3,6 minutes d’arc. NIRSpec comprend également cinq fentes fixes et une unité de champ intégrale qui fournissent les spectres de sources ponctuelles et d’objets étendus, respectivement. Six grilles fournissent une spectroscopie à haute résolution (λ/Δλ=R=1400-3600) et à moyenne résolution (R=500-1300) sur la gamme de longueurs d’onde de 0,7 µm – 5 µm, tandis qu’un prisme permet une spectroscopie à plus basse résolution (R=30-300) sur la gamme de 0,6 µm – 5 µm.

NIRSpec a été construit par l’industrie européenne selon les spécifications de l’ESA et géré par le projet JWST de l’ESA à l’ESTEC, aux Pays-Bas. Le maître d’œuvre est Airbus Defence and Space à Ottobrunn, en Allemagne. Les sous-systèmes du détecteur NIRSpec et du réseau de micro-obturateurs sont fournis par le Goddard Space Flight Center (GSFC) de la NASA.

  • Prochaine News : coordination zurichoise pour MIRI
Mission accomplished. The final taping of the protective cover is applied and the James Webb Space Telescope NIRSpec instrument is in its final flight configuration and ready to go back into the Integrated Science Instrument Module. – From left to right: Ralf Ehrenwinkler (Airbus DS), Frank Merkle (Airbus DS), Kai Hoffmann (Airbus DS), Robert Eder (Airbus DS), Max Speckmaier (Airbus DS) and Maurice te Plate (ESA). – Photo : NASA / C. Gunn

A Telescope Strapped Over a Swiss Seat

Exclusive interview
with Didier Manzoni
Director of the Space Division of APCO Technologies
in Aigle (near Lausanne), West of Switzerland

Through its innovative « Center of Excellence », APCO Technologies produces all the transverse means, transport containers and handling equipment for the propulsion modules and the composite of a launcher. What about the JWST? Interview with Didier Manzoni, director of APCO Technologies in Aigle.

Mr. Manzoni, how did your company manage to get the mandate from ESA for this JWST project?
Since we deliver systems for satellites as well as for launchers, it was obvious that we could get a mandate for the JWST. Since this is an ESA mission and our country is participating through the Swiss Space Office (SSO), we were awarded the contract after having responded to several calls for tender.

What precisely is the JWST component you have assembled in Aigle?
In terms of ground facilities, we delivered an adapter and a very high strength clamp that were used to secure JWST during all its tests and ground operations. We also delivered equipment to mount the NIRSPEC instrument and finally we delivered the interface structure of the same NIRSPEC instrument. There will be APCO Technologies in orbit on JWST.

In Aigle, you have 16’000 m2 halls, it’s very big. How are the satellite or launcher components transported?
By truck via the road and highway. The equipment is housed in specific containers escorted by the police. For example, the containers containing the Ariane covers can leave on the Rhine and go as far as Bremen. Other containers go to Toulouse or to Friedrichshafen at Airbus or to Cannes at Thales. The final transport of a satellite is usually by airlift to Kourou.

What difficulties might you encounter when transporting one of your satellites?
We have specifications that indicate the forces that must be applied during the trip by plane, in the ship and on the roads. We have to make sure that there will be no problems during all stages of the transport. Either between APCO and the prime contractor (Airbus, Thales,…), or from where the satellite is completed to Kourou.

  • Next News : Zurich coordination for MIRI

NIRSPEC
THE NEAR-INFRARED SPECTROGRAPH ON JWST
The primary science goal for NIRSpec is to enable large spectroscopic surveys of astronomical objects with a particular focus on the study of distant galaxies. It has driven the design of this multi-object spectrograph, which is capable of measuring the spectra of up to 200 objects simultaneously in a 3.4 arcminute × 3.6 arcminute field of view. NIRSpec also includes five fixed slits and an integral field unit that provide spectra of point-like sources and of extended objects, respectively. Six gratings provide high-resolution (λ/Δλ=R=1400-3600) and medium-resolution (R=500-1300) spectroscopy over the wavelength range of  0.7 µm – 5 µm, while a prism yields lower-resolution (R=30-300) spectroscopy over the range 0.6 µm – 5 µm.

NIRSpec has been built by European industry to ESA’s specifications and managed by the ESA JWST Project at ESTEC, the Netherlands. The prime contractor is Airbus Defence and Space in Ottobrunn, Germany. The NIRSpec detector and micro-shutter array subsystems are provided by NASA’s Goddard Space Flight Center (GSFC).

Artist rendering of the James Webb Space Telescope Near-InfraRed Spectrograph (NIRSpec) instrument. This figure shows the path followed by light from an astronomical object as it travels through the NIRSpec components and onto the detector.

Pour gérer au mieux ces News et vous informer de manière concise et conviviale, faites-moi un don !

To better manage this News and inform you in a concise and user-friendly way, please make a donation!

Ponctuel
Mensuellement
Annuellement

Faire un don ponctuel

Faire un don mensuel

Faire un don annuel

Choisir un montant

€5,00
€15,00
€100,00
€5,00
€15,00
€100,00
€5,00
€15,00
€100,00

Ou saisir un montant personnalisé


Votre contribution est appréciée.

Votre contribution est appréciée.

Votre contribution est appréciée.

Faire un donFaire un don mensuelFaire un don annuel

Les atouts du cerf-volant spatial JWST dans le froid

La lumière sera captée par un très grand miroir – 6,5 m de diamètre – et dirigée vers quatre instruments infrarouges très sensibles. Le télescope et les instruments seront maintenus en permanence à l’ombre d’un énorme bouclier solaire et maintenus à des températures extrêmement basses.
Inspecting JWST’s primary mirror. Inspection du miroir primaire du JWST. – Photo : ESA/NASA

[Courrendlin, December 21, 2021, rke. English below.]
Après mes 33 lancements sur site au pied des fusées, je suis toujours bloqué en Suisse en raison de la Covid-19, je dois publier mes news au pays. Le lancement du JWST est toujours prévu ce samedi 25 décembre à 13h20 (heure suisse) de Kourou en Guyane française. Le père Noël fera-t-il un cadeau aux astronomes ?

Photo du haut – Test du miroir : © ESA / NASA

Interview exclusive
avec Didier Manzoni
directeur de la division Espace d’APCO Technologies à Aigle

Leader européen du développement et de la fourniture de moyens sol (MGSE) pour satellites, instruments et lanceurs, APCO Technologies fournit également les parties hautes et basses des moteurs d’appoint d’Ariane 6. Mais l’entreprise vaudoise implantée à Aigle (Est de Lausanne) est également reconnue comme l’un des principaux partenaires industriels pour les sous-systèmes structures et thermiques de satellites.

Dans le froid sidéral, à 1,5 million de Km au point Lagrange 2, si loin de nous, le plus gros télescope spatial du monde, le James Webb Space Telescope (JWST) est muni d’un bouclier solaire composé de micro-feuilles.

Monsieur Manzoni, pourquoi le JWST est-il muni de feuilles superposées et espacées les unes aux autres ?
Le satellite Planck avait un système un peu similaire, mais avec des panneaux en composite alors que le JWST dispose de feuilles souples déployées. Ces feuilles protègent du soleil et isole d’une certaine manière le satellite qui fonctionne à très basse température, les instruments scientifiques comme MIRI et NIRSPEC travaillent à une température cryogénique et il est nécessaire de refroidir ces instruments.

Paradoxe : si loin du Soleil, le télescope doit encore se refroidir pour mieux capter la chaleur des autres étoiles lointaines

Alors, à quoi sert l’espace de quelques centimètres ?
Dans l’Espace, il n’y a pas d’air, entre chacune de ces feuilles, tous les échanges thermiques se font par conduction et radiation. Comme pour Planck, en ayant ce qu’on appelle des « chapeaux chinois », la température diminue progressivement jusqu’à parvenir à un niveau le plus bas possible, passivement. Puis, on va continuer à refroidir mais activement.

Et pourquoi 5 feuilles ?
Chacune de ces feuilles réduit la température, petit à petit. Par calcul et par essais, en prenant de la marge, on démontre que cinq feuilles sont finalement nécessaires.

Bon, des feuilles de bouclier solaire… mais il est bien loin le soleil !
Ces « boucliers solaires » ou « Sun Schild» sont orientés vers ce qu’on appelle le « Deep Space » ou l’espace profond à 4 Kelvins, car les échanges radiatifs sont bien meilleurs quand le satellite regarde le froid. Leur taille très vaste permet de bien concentrer leur efficacité et l’espace entre chacun de ces « chapeaux chinois » permet de réduire les échanges parasites. (à suivre…)

Que peut faire le Webb, que ne peut pas faire Hubble ?
La vision de Webb couvre de plus grandes longueurs d’onde de lumière que Hubble et il possède une sensibilité 100 fois supérieure, ce qui ouvre une nouvelle fenêtre sur l’Univers. Les plus grandes longueurs d’onde permettent aussi à Webb de voir à l’intérieur des épais nuages de gaz et de poussière où se forment les étoiles et les systèmes planétaires, de révéler la composition de l’atmosphère des exoplanètes de manière plus détaillée et de remonter plus loin dans le temps pour assister à la formation des premières galaxies, alors que l’Univers était encore jeune.

Explications :
Des feuilles d’aluminium aussi fines qu’un cheveu
Les feuilles du bouclier solaire fournissent une couche isolante pour l’optique et aident à dissiper la chaleur. Le bouclier comporte cinq couches et chacune d’elles est aussi fine qu’un cheveu humain (0,05 mm) et est recouvert d’aluminium pour la réflectivité. La couleur violette de certaines couches provient du silicium, le même matériau que celui utilisé dans la plupart des puces informatiques, qui renforce le bouclier et l’aide à réfléchir la chaleur. Le télescope utilise ce bouclier solaire pour ne pas être réchauffé par le rayonnement infrarouge du Soleil et d’autres objets célestes proches, ce qui nuirait au fonctionnement normal des instruments embarqués.Ce pare-soleil en forme de cerf-volant mesure 22 m sur 10 m et reçoit 300 KW du rayonnement solaire, mais ne transmet que 23 milliwatts de l’autre côté. En bref, le télescope doit être plus froid que les objets qu’il tente d’observer.

Voir plus loin avec quatre instruments de pointe
Le télescope spatial James Webb (Webb) est en passe de devenir le plus grand et le plus puissant télescope jamais lancé dans l’espace. Il emboîtera le pas du télescope spatial Hubble en constituant le prochain grand observatoire scientifique spatial, conçu pour répondre aux questions les plus essentielles sur l’Univers et faire des découvertes révolutionnaires dans tous les domaines de l’astronomie.
Le Webb révélera un Univers pour l’instant caché à nos yeux : des étoiles enveloppées dans des nuages de poussière, des molécules dans l’atmosphère d’autres mondes, et la lumière des premières étoiles et galaxies. Équipé de quatre instruments de pointe, le télescope Webb repoussera les limites de nos connaissances sur le système solaire, sur la formation des étoiles et des planètes, ainsi que sur la formation et l’évolution des galaxies.

  • Prochaines News :
    Le JWST sanglé sur son siège suisse
    Coordination zurichoise pour MIRI

The benefits of the JWST space kite in the deep cold (I)

This sunshield is the largest part of JWST and offers intense protection from the Sun, letting through less than a millionth of the Sun’s heat! This massive parasol is as long as a tennis court, but incredibly light. It is composed of five super-thin membranes that will separate and unfurl into a precise arrangement once the telescope is in space. During launch, this shield will be folded up like an umbrella to fit neatly around the telescope’s mirrors and other instruments within the Ariane 5 rocket fairing.
When unfurled, the sunshield will protect JWST’s ‘cold’ side, where very sensitive infrared instruments are located inside the Integrated Science Instruments Module, maintaining a thermally stable cold environment, around –233 ºC! – Photo : ESA/NASA

[Courrendlin, December 21, 2021, rke]
After my 33 launches on site at the foot of the rockets, I am still stuck in Switzerland because of Covid-19, I have to publish my news back home. The JWST launch is still scheduled this Saturday, December 25 at 13:20 (Swiss time) from Kourou in French Guyana.
– Inspecting JWST’s primary mirror : © ESA / NASA

Exclusive interview
with Didier Manzoni
Director of the Space Division of APCO Technologies
in Aigle (near Lausanne), West of Switzerland

Didier Manzoni.

APCO Technologies is the European leader in the development and supply of ground support systems (GSS) for satellites, instruments and launchers. It also supplies the upper and lower parts of the Ariane 6 boosters. But the Vaud-based company, located in Aigle (east of Lausanne), is also recognized as one of the main industrial partners for satellite structural and thermal subsystems.

In the sidereal cold, 1.5 million km away at the Lagrange 2 point, so far from us, the world’s largest space telescope, the James Webb Space Telescope (JWST), is equipped with a solar shield made of microsheets. Interview with Didier Manzoni, Director of the Space Division of APCO Technologies in Aigle.

Mr Manzoni, why is the JWST equipped with superimposed and spaced sheets?
The Planck satellite had a somewhat similar system, but with composite panels, whereas the JWST has flexible deployed sheets. These sheets protect from the sun and somehow insulate the satellite which operates at very low temperature, scientific instruments like MIRI and NIRSPEC work at cryogenic temperature and it is necessary to cool these instruments.

So, what is the space of a few centimeters?
In Space, there is no air, between each of these sheets, all heat exchange is done by conduction and radiation. As for Planck, by having what we call « Chinese hats », the temperature decreases gradually until it reaches the lowest possible level, passively. Then, we will continue to cool but actively.

And why 5 leaves?
Each of these leaves reduces the temperature, little by little. By calculation and testing, with some leeway, we show that five sheets are finally necessary.

Well, solar shield sheets… but the sun is far away!
These « sun shields » or « Sun Schild » are oriented towards the so-called « Deep Space » or deep space at 4 Kelvin, because the radiative exchanges are much better when the satellite looks at the cold. Their very large size allows to concentrate their efficiency and the space between each of these « Chinese hats » allows to reduce the parasitic exchanges.
(To be followed)

Details:
Aluminum sheets as thin as a hair
The foils of the solar shield provide an insulating layer for the optics and help dissipate heat. The shield has five layers and each layer is as thin as a human hair (0.05 mm) and is coated with aluminum for reflectivity. The purple color of some layers comes from silicon, the same material used in most computer chips, which strengthens the shield and helps it reflect heat. The telescope uses this solar shield to prevent it from being heated by infrared radiation from the Sun and other nearby celestial objects, which would interfere with the normal operation of the onboard instruments.This kite-shaped sunshield measures 22 m by 10 m and receives 300 KW of solar radiation, but transmits only 23 milliwatts on the other side. In short, the telescope must be cooler than the objects it is trying to observe.

Seeing further with four state-of-the-art instruments
The James Webb Space Telescope (Webb) is poised to become the largest and most powerful telescope ever launched into space. It will follow in the footsteps of the Hubble Space Telescope as the next great space science observatory, designed to answer the most critical questions about the Universe and make groundbreaking discoveries in all fields of astronomy.
The Webb will reveal a Universe that is currently hidden from our eyes: stars wrapped in dust clouds, molecules in the atmosphere of other worlds, and the light of the first stars and galaxies. Equipped with four state-of-the-art instruments, the Webb telescope will push the limits of our knowledge about the solar system, the formation of stars and planets, and the formation and evolution of galaxies.

This archival image was taken in February 2021 and shows the James Webb Space Telescope’s sunshield being folded and packed by engineers and technicians at Northrop Grumman. Read more about this in our April 2021 milestone feature, excerpted below.
 Engineers working on NASA’s James Webb Space Telescope have successfully folded and packed its sunshield for its upcoming million-mile (roughly 1.5 million kilometer) journey, which begins later this year. The sunshield — a five-layer, diamond-shaped structure the size of a tennis court — was specially engineered to fold up around the two sides of the telescope and fit within the confines of its launch vehicle, the Ariane 5 rocket. Now that folding has been completed at Northrop Grumman in Redondo Beach, California, the sunshield will remain in this compact form through launch and the first few days the observatory will spend in space. -Photo : ESA/NASA

Bons baisers du cosmos

[Courrendlin, Switzerland, September 9, 2021, rke. English below]
L’espace, il l’aime Matthias Maurer. L’astronaute allemand de l’Agence spatiale européenne (ESA) est prêt pour sa première mission à bord de la Station spatiale internationale (ISS). Il s’est présenté à la presse ce jeudi 9 septembre 2021 à Cologne (D) au Centre européen des astronautes, European Astronaut Centre (EAC), du DLR (Deutsches Zentrum für Luft- und Raumfahrt). Exigences sanitaires obligent, j’ai dû le suivre en ligne. Évidemment.

En conférence de presse à Cologne, Matthias Maurer avec, en haut, sur l’écran le nouveau directeur de l’Agence spatiale européenne (ESA), Josef Aschbacher. – Photo : ESA / DLR

Âgé de 51 ans, le Sarrois, originaire de Saint-Wendel (Land, Sarre, entre Metz et Luxembourg), ira pour la première fois dans l’espace lors de la mission « Cosmis Kiss ». Celle-ci devrait être lancée avec la capsule Dragon Crew-3 (3e équipage) de SpaceX depuis le pas de tir 39A du Kennedy Space Center (Floride). Spécialiste des matériaux titulaire d’un doctorat, l’Allemand est paré au décollage dont le lancement est prévu le 31 octobre 2021 au plus tôt. Il volera avec les astronautes de la NASA Raja Chari, Thomas H. Marshburn et Kayla Barron.

100 expériences dans l’ISS
Matthias Maurer fait partie du corps des astronautes de l’ESA depuis juillet 2015. Il est aguerri, car il a été formé au Centre des astronautes de l’ESA à Cologne, au Johnson Space Center de la NASA à Houston, dans le cockpit du Crew Dragon de SpaceX en Californie, ainsi qu’avec les autres partenaires de l’ISS en Russie, au Japon et au Canada. « Je suis fasciné par la technologie, la science et la coopération au sein d’équipes internationales, et c’est exactement ce que sera mon travail pendant les six mois passés dans l’espace. Je participerai à plus de 100 expériences et j’espère que les résultats obtenus contribueront à des progrès pour notre vie quotidienne dans l’espace, mais aussi ici sur Terre », a-t-il déclaré lors de la conférence.

Vue de la conférence de presse. – Photo : Bernhard L. von Weyhe / ESA

Sa force mentale
Une mission spatiale n’est pas facile, c’est évident, mais l’Allemand est confiant « Une grande partie de ma force mentale vient de l’excitation de ce qui m’attend maintenant. Pour moi, le rêve de toute une vie va bientôt se réaliser – avec une équipe fantastique sur laquelle je peux compter aveuglément à tout moment. » Beaucoup de choses seront uniques, dit-il : « Cela commence par le voyage fougueux à bord d’une fusée qui m’accélère à plus de 28’000 kilomètres par heure en moins de dix minutes. J’arriverai à la station spatiale et effectuerai ma première orbite dans l’espace en seulement 90 minutes, où je pourrai m’imprégner de la beauté de la Terre depuis notre fenêtre dans l’espace, la Coupole. Une activité extravéhiculaire aura lieu, nous l’espérons, et sera également un moment fort. »

Cosmic Kiss
Cosmic = espace
Kiss = bisou
K(iss) = ISS
pour International Space Station

36 expériences proviennent d’Allemagne
L’Agence spatiale allemande (DLR), basée à Bonn, est chargée de sélectionner et de coordonner les expériences et les contributions des universités et collèges allemands ainsi que de l’industrie. Les scientifiques du DLR mènent également leurs propres expériences. Le centre de contrôle Columbus de l’ESA, basé au centre d’opérations spatiales allemand du DLR à Oberpfaffenhofen, est responsable de la planification et de la réalisation des expériences qui se déroulent dans le module européen Columbus sur l’ISS. De là, les données des expériences sont envoyées aux centres nationaux de contrôle des utilisateurs et, de là, aux scientifiques et aux partenaires industriels participants. 36 expériences de la mission Cosmic Kiss proviennent d’Allemagne. Ils comprennent la recherche fondamentale ainsi que des tests scientifiques et technologiques orientés vers les applications dans les domaines des sciences de la vie et des matériaux, de la physique, de la biologie, de la médecine, de l’intelligence artificielle ou de l’observation de la Terre. En outre, un vaste programme pour les jeunes scientifiques est à l’ordre du jour de Matthias Maurer.

« Cosmic Kiss », le plein d’amour pour l’espace
La mission de Matthias Maurer s’appelle « Cosmic Kiss ». Le nom de la mission est une sorte de déclaration d’amour pour l’espace, pour la station spatiale en tant que lien entre l’humanité et le cosmos, et pour ce que les gens y font et y feront à l’avenir. En même temps, il représente la valeur de l’exploration de l’espace en partenariat et la nécessité de traiter notre planète avec respect et durabilité. Au centre du logo de la mission figure donc également l’ISS, qui est reliée à la Terre et à la Lune par un battement de cœur humain. Le battement de cœur est censé symboliser la passion et la curiosité qui poussent les gens à explorer l’espace, ainsi que les expériences scientifiques que la station spatiale rend possibles. Pour le logo, Matthias Maurer s’est inspiré du disque céleste Nebra (la plus ancienne représentation connue du ciel nocturne) et des supports de données des sondes spatiales Pioneer et Voyager (avec les connaissances recueillies sur l’humanité). Ils représentent la fascination de l’humanité pour l’espace et le désir d’en savoir plus sur l’origine de la vie, l’univers et la place que nous y occupons. L’emblème comprend également divers éléments cosmiques tels que la Terre, la Lune, l’astérisme des Pléiades et Mars.

La Luna de l’ESA
Matthias Maurer est l’un des sept astronautes actifs de l’Agence spatiale européenne (ESA). La Lune et Mars ont une signification particulière pour lui. Avant le début de son entraînement à la mission en avril 2020, il était chef de projet pour le développement de la future installation de simulation lunaire Luna de l’ESA, un projet conjoint de l’ESA et du DLR, à Cologne. Il a également participé à plusieurs exercices géologiques de terrain liés à la future exploration lunaire. En 2016, il a fait partie de l’équipage de la mission analogue NEEMO 21 de la NASA, pour laquelle il a passé un total de 16 jours sous l’eau à tester des stratégies et des outils d’exploration pour les futures missions sur Mars.

« Cosmic Kiss »

Les quatre astronautes de la mission Dragon Crew-3. – Photo : NASA / ESA

[Courrendlin, Switzerland, September 9, 2021, rke]
Space, he loves it Matthias Maurer. The German astronaut of the European Space Agency (ESA) is ready for his first mission on board the International Space Station (ISS). He presented himself to the press on Thursday, September 9, 2021, in Cologne (D) at the European Astronaut Centre (EAC) of the German Aerospace Center (DLR). Because corona mode, I had to follow it online. Of course, I did.

The 51-year-old from Saint-Wendel (Saarland, between Metz and Luxembourg) will go into space for the first time on the « Cosmis Kiss » mission. The mission is scheduled to be launched with SpaceX’s Dragon Crew-3 capsule (3rd crew) from launch pad 39A at the Kennedy Space Center (Florida). A materials scientist with a doctorate, the German is ready for takeoff, with launch scheduled for October 31, 2021 at the earliest. He will fly with NASA astronauts Raja Chari, Thomas H. Marshburn and Kayla Barron.

Matthias Maurer. – Photo : ESA /NASA

100 Experiments on the ISS
Matthias Maurer has been a member of the ESA astronaut corps since July 2015. He is seasoned, having trained at the ESA Astronaut Center in Cologne, NASA’s Johnson Space Center in Houston, in the cockpit of SpaceX’s Crew Dragon in California, as well as with the other ISS partners in Russia, Japan and Canada. « I’m fascinated by technology, science and working with international teams, and that’s exactly what my job will be during my six months in space. I will be involved in more than 100 experiments and hope that the results will contribute to advances for our daily lives in space, but also here on Earth, » he said at the conference.

Matthias in training. – Photo : ESA

His Mental Strength
A space mission is not easy, that’s obvious, but the German is confident: « A big part of my mental strength comes from the excitement of what is ahead of me now. For me, the dream of a lifetime is about to come true – with a fantastic team that I can count on blindly at all times. » Many things will be unique, he says: « It starts with the fiery journey aboard a rocket that accelerates me to over 28,000 kilometers per hour in less than ten minutes. I’ll arrive at the space station and complete my first orbit in space in just 90 minutes, where I’ll be able to soak up the beauty of Earth from our window in space, the Cupola. An extravehicular activity will hopefully take place and will also be a highlight. »

36 Experiments Come from Germany
The German Space Agency (DLR), based in Bonn, is responsible for selecting and coordinating experiments and contributions from German universities and colleges as well as industry. DLR scientists also conduct their own experiments. ESA’s Columbus Control Center, based at DLR’s German Space Operations Center in Oberpfaffenhofen, is responsible for the planning and execution of experiments that take place in the European Columbus module on the ISS. From there, the experiment data are sent to the national user control centers and from there to the participating scientists and industrial partners. Thirty-six experiments of the Cosmic Kiss mission come from Germany. They include basic research as well as application-oriented scientific and technological tests in the fields of life and material sciences, physics, biology, medicine, artificial intelligence or Earth observation. In addition, an extensive program for young scientists is on Matthias Maurer’s agenda.

« Cosmic Kiss », the Love of Space
Matthias Maurer’s mission is called « Cosmic Kiss ». The name of the mission is a kind of declaration of love for space, for the space station as a link between mankind and the cosmos, and for what people do and will do there in the future. At the same time, it represents the value of exploring space in partnership and the need to treat our planet with respect and sustainability. At the center of the mission logo, therefore, is also the ISS, which is connected to the Earth and the Moon by a human heartbeat. The heartbeat is meant to symbolize the passion and curiosity that drives people to explore space, as well as the scientific experiments that the space station makes possible. For the logo, Matthias Maurer was inspired by the Nebra celestial disk (the oldest known representation of the night sky) and the data carriers of the Pioneer and Voyager space probes (with the knowledge gathered about humanity). They represent humanity’s fascination with space and the desire to learn more about the origin of life, the universe and our place in it. The emblem also includes various cosmic elements such as the Earth, the Moon, the Pleiades asterism and Mars.

The ESA Luna
Matthias Maurer is one of the seven active astronauts of the European Space Agency (ESA). The Moon and Mars have a special meaning for him. Prior to the start of his mission training in April 2020, he was project manager for the development of the future ESA lunar simulation facility Luna, a joint project of ESA and DLR, in Cologne. He also participated in several geological field exercises related to future lunar exploration. In 2016, he was part of the crew of NASA’s NEEMO 21 analog mission, for which he spent a total of 16 days underwater testing exploration strategies and tools for future Mars missions.

Vers une ère des fusées sans carbone

[Courrendlin, Switz., July 25, 2021, rke. English below]
Épisode 1 | Coup de gueule spatial ! Suite à la polémique suscitée sur les réseaux sociaux et même dans les médias classiques à propos d’un tourisme spatial de milliardaires envahissants et de fusées pollueuses, je m’offusque du complotisme ambiant. Je veux placer les faits dans leur contexte… et pas ailleurs !
Premier épisode : la soi-disant pollution des fusées


Décollage de Blue Origin le 20 juillet 2021. Dans la course à l’espace, Jeff Bezos, accompagné de son frère, de Wally Funk, une aviatrice américaine de 82 ans, et d’un jeune néerlandais de 18 ans, s’est envolé mardi 20 juillet à bord du New Shepard qui a franchi 107 kilomètres d’altitude. À la sortie de la tuyère : de l’eau !
Blue Origin liftoff on July 20, 2021. In the space race, Jeff Bezos, accompanied by his brother, Wally Funk, an 82-year-old American aviatrix, and an 18-year-old Dutchman, took off on Tuesday, July 20, aboard the New Shepard, which reached an altitude of 107 kilometers.
At the exit of the nozzle: water!

Le carbone : infime
Le 95% des fusées décollent avec de l’oxygène et de l’hydrogène liquides. Les tuyères, d’où sort la fumée blanche au contact de l’air, crachent de l’eau (-182 degrés C. à -222 degrés C., LOx LH2). C’est le cas pour les ex-navettes spatiales américaines : 135 vols d’avril 1981 à juillet 2011, les fusées Falcon de SpaceX, Delta IV de la NASA (la grosse américaine), Blue Origin de Jeff Bezos, les célèbres lanceurs lunaires Saturn I à V (1967-1072), les Ariane, etc.
Certes, pour accroître la poussée, certains de ces engins spatiaux précités carburent avec de la poudre grâce des propulseurs d’appoint de la navette (SRB) : 16 % poudre, d’aluminium pulvérulent (carburant) ; 69,6 % perchlorate d’ammonium (comburant) ; 0,4 % poudre d’oxyde de fer (catalyseur) ; 12 % polybutadiène acrylonitrile (liant) et 2 % polyépoxydes. L’avion spatial de Virgin Galactin quant à lui, vole avec un moteur-fusée hybride (également appelé lithergol) qui brûle du protoxyde d’azote (liquide) et un dérivé du polybutadiène hydroxytéléchélique (solide).


Décollage d’une fusée Falcon 9 (Space Force’s GPS 3 SV05 du 17 juin 2021) qui passe le mur du son. À la sortie des 9 tuyères :
de l’eau très légèrement acidulée de méthane.
Liftoff of a Falcon 9 rocket (Space Force’s GPS 3 SV05 of June 17, 2021) which passes the sound barrier. At the exit of the 9 nozzles:
water very slightly acidulated with methane.
– Photo : SpaceX
  • Pour SpaceX, voir le commentaire de mon collègue Bruno Stanek :
    cliquez ici

De l’eau et de la poudre
Tout compte fait, il ne faut pas faire – dans le domaine de la fusée qui embarque un mélange de liquides refroidis et de poudre – d’amalgame avec l’aviation, qui utilise principalement du Kérosène. Les fusées, actuelles sont infiniment peu pollueuses et le seront de moins en moins grâce à de nouveaux propulseurs exempts d’éléments toxiques. Même si, jusque-là, le tourisme de masse se développe. (À lire dans une de mes prochaines News)
Je pourrais davantage m’inquiéter sur les feux d’artifices pyrotechniques (potassium, cuivre, baryum, sodium, calcium et métaux toxiques notamment, etc.) lancés par ci et là, rien que dans une fête nationale comme la nôtre en Suisse. Mais là, personne ne s’en offusque, ni aux Jeux olympiques ni ailleurs.

Mes prochains Posts :

  • Le pognon et les milliardaires
  • Le tourisme de masse dans l’espace
  • L’engorgement sur orbite…

Actuelles ou dans un avenir lointain, les fusées sont infiniment moins polluantes que les feux d’artifices pyrotechniques festifs de par le monde

A carbon-free rocket era (I)


Décollage de Virgin Galactic le 11 juillet 2021 à 8h40 (local), 15h40 (suisse) à 88 km d’altitude.
A la sortie de la tuyère : du liquide d’azote.
Virgin Galactic take-off on July 11, 2021 at 8:40 am (local).
At the exit of the nozzle: nitrogen liquid.

Photo : Virgin Galactic

[Courrendlin, Switzerland, July 25, 2021, rke]
Episode 1 | Space rage! Following the controversy on social networks and even in the mainstream media about space tourism by invading billionaires and polluting rockets, I take offense at the ambient conspiracy. I want to put the facts in their context… and not elsewhere!
First episode: the supposed pollution of rockets

Carbon: Tiny
Ninety-five percent of rockets take off with liquid oxygen and hydrogen. The nozzles, from which the white smoke comes out in contact with the air, spit water (-182 degrees C. to -222 degrees C., LOx LH2). This is the case for the former American space shuttles: 135 flights from April 1981 to July 2011, SpaceX’s Falcon rockets, NASA’s Delta IV (the big American one), Jeff Bezos’s Blue Origin, the famous Saturn I to V lunar launchers (1967-1072), the Ariane, etc.
To increase thrust, some of these spacecrafts are fueled with powdered propellants from the Shuttle Booster Boosters (SRB): 16% powdered aluminum (fuel); 69.6% ammonium perchlorate (oxidizer); 0.4% iron oxide powder (catalyst); 12% polybutadiene acrylonitrile (binder) and 2% polyepoxides. Virgin Galactic’s space plane, on the other hand, flies with a hybrid rocket engine (also called lithergol) that burns nitrous oxide (liquid) and a hydroxytelechelic polybutadiene derivative (solid).

  • For SpaceX, see the commentary of my colleague Bruno Stanek:
    click here

Réglage de mon appareil à photo à distance sur le pas de tir de Solar Orbiter ULA/Atlas V le 10 février 2020.
Setting up my remote camera on the Solar Orbiter ULA/Atlas V launch pad on February 10, 2020.

Water and powder
All in all, we should not confuse rockets – which carry a mixture of cooled liquids and powder – with aviation, which uses mainly kerosene. The current rockets are infinitely little polluting and will be less and less so thanks to new propellants free of toxic elements. Even if, until then, mass tourism is developing. (To be read in one of my next news)
I could be more worried about the pyrotechnic fireworks (potassium, copper, barium, sodium, calcium and toxic metals, etc.) launched here and there, just in a national holiday like ours in Switzerland. But no one takes offense to this, neither at the Olympic Games nor elsewhere.

Now or in the faraway future, rockets are infinitely less polluting than the festive fireworks around the world.

My Next Posts:

  • – Money and billionaires
  • – Mass tourism in space
  • – Congestion in orbit…

Du X-15 à Space-Ship-Two : l’espace des « milliard-nautes »

Photo du haut : NASA X-15 (droite) + Virgin Galactic

[Courrendlin, Switzerland, July 12, 2021, rke]
English below
Richard Branson, 71 ans ce 18 juillet, a bien mérité son envol. À force de persévérance, le Britannique a concrétisé son rêve d’enfant de tutoyer l’espace en tant que personne privée dimanche 11 juillet 2021 à bord du vaisseau de son entreprise Virgin Galactic qu’il a fondée il y a 17 ans sur les fondements d’un exploit étatique qui date de 62 ans déjà ! Mais sans des milliardaires, à l’instar de Jeff Bezos, Elon Musk ou Richard Branson, l’espace ne serait jamais accessible à tout un chacun. Comme l’aviation dans les années vingt.

Je suis sur la piste de Spaceport America en 2013. – Photo by Mauricio Ranzi

Archives :

En mars 2013, j’ai eu l’occasion de visiter le Spaceport America avec mon collègue Mauricio Ranzi, puis en 2016 lors d’un deuxième trip… juste avant mon vol ZéroG avec Novespace 

Le premier vol habité d’une fusée propulsée sous un avion date en effet du 8 juin 1959 avec le X-15. Durant 200 vols d’essai de 1960 à 1968 pour le compte de la NASA et de l’US Air Force, cet avion expérimental a établi des records définitifs de 7’272,68 km/h pour la vitesse (le 3 octobre 1967) et de 107,96 km pour l’altitude (le 23 août 1963). Il a permis aux Américains de récolter de très nombreuses données sur le comportement des flux d’air, le frottement aérodynamique, le contrôle et la stabilité d’un aéronef à grande vitesse et hors de l’atmosphère, ainsi que sur les techniques de rentrée dans l’atmosphère… qui ont aidé à la conquête spatiale avec les vols Mercury, Gemini et Apollo.

Grâce à Burt Rutan
Puis, le 21 juin 2004 le pilote d’essai et astronaute Mike Melvill a atteint l’altitude de 100,124 Km avec SpaceShipOne, premier véhicule privé conçu par Burt Rutan, un ingénieur de Portland de l’entreprise Scaled Composites, lequel, avec a remporté le prix de la Fondation X Prize, grâce au financement du co-fondateur de Microsoft Paul Allen. À travers Virgin Galactic, Richard Branson a racheté les brevets à Scaled Compotites pour exploiter l’avion à des fins commerciales.

Au prix d’une vie
Il aura donc fallu plus de huit après ma première visite à Spaceport America, pour que le premier vol passager puisse avoir lieu avec succès dans le désert du Nouveau-Mexique. Le 13 mars 2013, j’avais interviewé Christine Anderson, alors directrice exécutive (CEO) du port spatial.

Christine Anderson – 13 mars 2013 – Interview by Roland J. Keller

Facteurs humains
C’était alors sans compter l’accident de VSS Enterprise survenu le 31 octobre 2014 désintégré en vol dans le désert de Mojave (Californie) qui a causé la mort du copilote Michael Alsbury et qui a considérablement retardé les opérations. Causes de l’accident :  un déverrouillage du mécanisme de queue utilisé pour freiner l’avion pendant la descente.

Les enquêteurs de la NTSB ont conclu alors « que les concepteurs de l’avion spatial n’ont pas pris de mesure de protection contre les erreurs humaines et que le copilote Michael Alsbury a dû avoir été influencé par des contraintes de temps ainsi que par des vibrations et des accélérations fortes, ce qu’il n’avait pas subi depuis son dernier vol d’essai en avril 2013. Cette combinaison « a dû augmenter le stress du copilote. » 
La NTSB a également « émis des critiques à l’encontre de la FAA qui a autorisé les vols d’essai sans avoir fait suffisamment attention aux facteurs humains et sans avoir apporté l’assistance nécessaire à l’industrie naissante du tourisme spatial. Ils ont également cité des pressions de certains responsables de la FAA afin d’autoriser les vols d’essai, parfois sans comprendre complètement tous les détails ou les problèmes techniques de l’avion spatial. »
Dorénavant, tout fonctionne et tout semble en ordre pour assurer des vols sécurisés.

From X-15 to SpaceShipTwo: The Space of the « Billionaire-Nauts”

[Courrendlin, Switzerland, July 12, 2021, rke]
By dint of perseverance, the Briton made his childhood dream of flying into space as a private person come true on Sunday, July 11, 2021, aboard the ship of his company Virgin Galactic, which he founded 17 years ago on the basis of a state feat that already dates back 62 years! But without billionaires like Jeff Bezos, Elon Musk or Richard Branson, space would never be accessible to everyone. Like aviation in the 1920s.

At 107.96 Km in 1963
The first manned flight of a rocket propelled under an airplane dates from June 8, 1959, with the X-15. During 200 test flights from 1960 to 1968 for NASA and the US Air Force, this experimental aircraft set definitive records of 7,272.68 km/h for speed (on October 3, 1967) and 107.96 km for altitude (on August 23, 1963). It allowed the Americans to collect a lot of data on the behavior of the air flows, the aerodynamic friction, the control and the stability of an aircraft at high speed and out of the atmosphere, as well as on the techniques of re-entry in the atmosphere… which helped the space conquest with the Mercury, Gemini and Apollo flights.

In March 2013, I had the opportunity to visit Spaceport America with my colleague Mauricio Ranzi, and then in 2016 during a second trip…. just before my ZeroG flight.t with Novespace

Burt Rutan – Photo : Scaled Composites

Thanks to Burt Rutan
Then, on June 21, 2004, test pilot and astronaut Mike Melvill reached the altitude of 100,124 km with SpaceShipOne, the first private vehicle designed by Burt Rutan, an engineer from Portland of the company Scaled Composites, which won the X Prize Foundation, thanks to the financing of Microsoft co-founder Paul Allen. Through Virgin Galactic, Richard Branson bought the patents from Scaled Compotites to operate the aircraft commercially.

C’était en 2013. Comme le temps passe. – Photo by Mauricio Ranzi

At the Cost of a Life
So, it took more than eight after my first visit to Spaceport America, for the first passenger flight to successfully take place in the New Mexico desert. On March 13, 2013, I had interviewed Christine Anderson, then executive director (CEO) of the spaceport. Click hereThis was then without counting the VSS Enterprise accident on October 31, 2014, disintegrated in flight in the Mojave Desert, California, which caused the death of copilot Michael Alsbury and significantly delayed operations. Causes of the accident: an unlocking of the tail mechanism used to break the aircraft during descent.

Human Factors
NTSB investigators concluded then « that the designers of the space plane did not take safeguards against human error and that copilot Michael Alsbury must have been influenced by time pressures as well as strong vibrations and accelerations, which he had not experienced since his last test flight in April 2013. This combination « must have increased the first officer’s stress. »The NTSB also « offered criticism of the FAA for allowing the test flights without sufficient attention to human factors and without providing the necessary assistance to the nascent space tourism industry. They also cited pressure from some FAA officials to authorize the test flights, sometimes without fully understanding all the details or technical problems with the spaceplane. »
From now on, everything works and everything seems to be in order to ensure safe flights.

En direct sur ce blog

Lancement de SpaceX Dragon Crew2

En direct (Live) terminé
cliquez ici
pour voir les archives

[Courrendlin, Switzerland, April 19, 2021. English below]
Si tout va bien, l’astronaute français de l’Agence spatiale européenne (ESA) Thomas Pesquet retourne à la Station spatiale internationale (ISS) pour son deuxième vol sur orbite terrestre. Lors de cette mission, baptisée Alpha, le premier Européen à s’envoler à bord d’un vaisseau spatial américain depuis plus de dix ans est à bord du Crew Dragon – 3e lancement habité de SpaceX, mais 2e opérationnel – aux côtés des astronautes de la NASA Megan McArthur et Shane Kimbrough et de l’astronaute japonais Aki Hoshide.

Flash Back sur SpaceX Dragon Demo-1
Pandémie de Covid-19 oblige, je ne peux une nouvelle fois pas assister au lancement sur site depuis mon dernier décollage de Solar Orbiter en février 2020. Toutefois, comme j’ai eu la chance pouvoir assister au tout premier décollage de SpaceX Dragon Demo-1 (sans astronautes à bord), je suis en mesure de vous faire vivre ce lancement depuis la Suisse comme si vous y étiez. Ayant vécu les procédures de décollage similaires sur place, je pourrai conter, en marge, des anecdotes vécues alors… En plus, c’est le jour de mon anniversaire !

INFORMATIONS PRATIQUES

Les 4 astronautes parés au décollage – Photo : NASA

Live on this blog :
Launch of SpaceX Dragon Crew2

[Courrendlin, Switzerland, April 19, 2021] – If all goes well, European Space Agency (ESA) astronaut Thomas Pesquet will return to the International Space Station (ISS) for his second flight into Earth orbit. On this mission, dubbed Alpha, the first European to fly aboard a U.S. spacecraft in more than a decade is aboard the Crew Dragon – SpaceX’s third manned launch, but second operational – alongside NASA astronauts Megan McArthur and Shane Kimbrough and Japanese astronaut Aki Hoshide.

Flash Back on SpaceX Dragon Demo-1
Due to the Covid-19 pandemic, I am once again unable to attend the on-site launch since my last Solar Orbiter liftoff in February 2020. However, as I was lucky enough to be able to attend the very first SpaceX Dragon Demo-1 launch (without astronauts on board), I am able to make you live this launch from Switzerland as if you were there. Having experienced the similar launch procedures on the site, I will be able to tell, in the margin, anecdotes lived then… Moreover, it’s my birthday!

  • Follow the liftoff with me live on this blog: click here

Blog journalistique de Roland J.Keller – On-Site Reports With Swiss Feeling