Archives par mot-clé : CSA

Le cadeau du père Noël est arrivé : Ariane V s’est envolée le 25 décembre 2021

Ariane V (VA 256) s’est envolée à Noël de Kourou, Guyane française, le 25 décembre à 13h20 (Suisse). Photo : ESA / CNES

The James Webb Space Telescope was successfully deployed into the intended orbit approximately 28 minutes after being launched by an Ariane 5 launch vehicle (Ariane Flight VA256) from Ariane Launch Complex No. 3 (ELA 3) at Guiana Space Centre in Kourou, French Guiana, on 25 December 2021, at 12:20 UTC (09:20 local time, 07:20 EST, 13:20 CET).

Some statistics 

  • 256th launch of an Ariane rocket since 1979
  • 338th Arianespace mission
  • 112th launch of an Ariane 5 rocket since 1996
  • 85th satellite for ESA launched by Arianespace
  • 79th launch of an Ariane 5 ECA rocket since 2002
  • 87th flight of a Vulcain 2 engine
  • 111th flight of an HM7B engine
  • 2nd Ariane 5 launch targeting L2 Lagrange point
  • 7th launch from the Guiana Space Center in 2021
  • 3rd Ariane 5 launch in 2021

Sur la radio RFJ
Mon passage à La Matinale du 25 décembre 2021

Coordination scientifique zurichoise pour l’instrument MIRI

Test des instruments scientifiques. Les trois unités du proche infrarouge ont été refroidies à environ -233°C, tandis que l’instrument du moyen infrarouge a atteint une température encore plus basse de -266°C, pour un total de 116 jours. – Photo : NASA/Goddard/C. Gunn

[Courrendlin, December 25, 2021, rke, English below] Dans le cadre du consortium de l’instrument MIRI, l’EPFZ coordonne et chapeaute l’assemblage, les tests et l’intégration de l’appareil infrarouge MIRI. Et ce, grâce aux deux chercheurs suisses Simon Lilly et le Dr Adrian Glauser.

L’Institut de physique et d’astrophysique des particules (IPA) du département de physique de L’École polytechnique fédérale de Zurich (MIRI) fait partie du consortium MIRI (Mid-Infrared Instrument) du télescope spatial James Webb. MIRI est développé conjointement par les États-Unis et un consortium européen (CE) financé par des fonds nationaux, sous l’égide de l’Agence spatiale européenne. Le CE est responsable de l’optique, du banc optique, de l’assemblage, de l’intégration et des tests de l’instrument MIRI.  MIRI sera refroidi à 7 K et sera la partie la plus froide du JWST. Cette gamme de longueurs d’onde, associée à la sensibilité inédite du JWST, ouvrira une nouvelle ère de la recherche en astrophysique.

Transféré à l’EPFZ en 2008
Initialement, la contribution suisse était dirigée par le Dr Alexander Zehnder à l’Institut Paul Scherrer (PSI). En 2008, le projet a été transféré à l’EPFZ. Depuis 2007, le Dr Adrian Glauser est le chef de projet national suisse pour la participation au consortium de l’instrument MIRI pour le JWST et supervise les contributions des partenaires industriels suisses, RUAG Aerospace et SYDERAL. Il est soutenu dans son travail par le professeur Polychronis Patapis. Le professeur Manuel Guedel (Université de Vienne et professeur associé à l’EPFZ) est le co-chercheur principal suisse, le professeur Simon Lilly et le Dr Adrian Glauser sont les co-chercheurs suisses du consortium MIRI, respectivement.

MIRI est un instrument (imageur et spectromètre) de l’extrême puisqu’il collecte les rayonnements les plus longs (entre 5 et 29 microns) donc les moins chauds. Il est refroidi en dessous de la température déjà très froide de l’ensemble du télescope, jusqu’à -266°C par un liquide cryogénique, et il est équipé d’un coronographe (par « masque de phase ») qui permet d’éviter que l’image froide soit inondée par la lumière de la source lumineuse la plus proche (le plus souvent l’étoile de la planète visée). L’objet est cosmologique, recherche de la « première lumière » au sortir des « âges sombres », et astrophysiques, la formation des étoiles et la formation des systèmes planétaires.

Pourquoi le Webb observe-t-il dans l’infrarouge ?
En observant dans l’infrarouge, le Webb révélera tout un univers jusque là caché à nos yeux : des étoiles et des systèmes planétaires se formant dans des nuages de poussière et la première lumière des premières étoiles et galaxies jamais formées.

Pierre Brisson

Merveille technologique
Lire l’excellent article de Bierre Brisson président de la Mars Society Switzerland, membre du comité directeur de l’Association Planète Mars (France), économiste de formation (University of Virginia), ancien banquier d’entreprises de profession, planétologue depuis toujours.

Les autres contributions suisses

Contributeurs au JWST : 8 Suisses dans le coup !

Au nombre de 306 dans le monde dont 153 américains, 14 canadiens et 173 européens dont 8 suisses :

  • Syderal SA, Neuchâtel
  • Swiss Space Office, Berne
  • RUAG, Zurich
  • Physikalisches Institut, Berne
  • Paul Scherrer Institute, Villigen
  • Observatoire de Genève
  • ETH, Institute for Particle Physics and Astrophysics, Zurich
  • APCO Technologies SA, Aigle

La participation Suisse concerne surtout MIRI, l’instrument le plus délicat du JWST puisque c’est celui qui observera dans l’environnement le plus froid.

ZURICH. Contamination Control Cover. Ce couvercle, développé par RUAG Space, protégera MIRI contre la contamination externe pendant la phase de refroidissement des tests et après le lancement.
En outre, ce cryo-mécanisme fait office d’obturateur optique pour l’instrument afin de permettre l’étalonnage à bord et de protéger les détecteurs contre les objets brillants (photo ci-dessous)

NEUCHÂTEL. Cryo-câbles. Ces câbles, développés par l’entreprise neuchâteloise SYDERAL SA sont constitués de 250 fils électriques qui relient les mécanismes cryogéniques, les sources d’étalonnage et les capteurs de température du banc optique froid avec l’électronique chaude (Photo ci-dessous)

Zurich scientific coordination for the MIRI instrument

Adrian Glauser with a model of the James Webb Space Telescope, which will begin its journey into space in the next few days. (Image: ETH Zurich/D-​Phys/Heidi Hostettler)

As part of the MIRI consortium, ETH Zurich is coordinating and leading the assembly, testing and integration of the MIRI infrared instrument. This is thanks to two Swiss researchers Simon Lilly and Dr Adrian Glauser

The Institute for Particle Physics and Astrophysics (IPA) at the ETH Zürich Department of Physics is part of the James Webb Space telescope Mid-​Infrared Instrument (MIRI)call_made consortium. MIRI is jointly developed by the USA and a nationally funded European Consortium (EC) under the auspices of the European Space Agency. The EC is responsible for the optics, optical bench, and assembly, integration, and test of the MIRI instrument. 

The Mid Infrared Instrument (MIRI) is one of the four science instruments on JWST and the only one which covers the poorly explored wavelength ranges from 5 μm to 28 μm. Therefore, MIRI will be cooled at 7 K and is the coldest part in the JWST. This wavelength range combined with the border breaking sensitivity of JWST will initiate a new age of astrophysical research.

Initially, the Swiss contribution was led by Dr. Alexander Zehnder at the Paul Scherrer Institute (PSI). In 2008, the project was transferred to ETH Zurich. Since 2007, Dr. Adrian Glauser serves at Swiss National Project Lead for participation in the MIRI Instrument Consortium for the JWST and oversees the contributions of the Swiss industry partners, RUAG Aerospacecall_made and SYDERAL SAcall_made. He is supported in his work by Polychronis Patapis. Prof. Manuel Guedel (University of Vienna and Associate Professor at ETH Zurich) serves as the Swiss co-​Principle Investigator, Prof. Simon Lilly and Dr. Adrian Glauser as Swiss co-​Investigators for the MIRI Consortium, respectively.

Swiss industry contribution

Contamination Control Cover on its mechanical support bracket manufactured by RUAG Aerospace (Image: MIRI)
  • Contamination Control Cover. The cover, developed by RUAG Aerospacecall_made, will protect MIRI against external contamination during the cooldown phase of the tests and after the launch. Additionally, this cryo-​mechanism acts as an optical shutter for the instrument to allow on-board calibration and to protect the detectors against bright objects.

  • NEUCHÂTEL. Cryo-​Cables. These cables, developed by SYDERAL SAcall_made consist of 250 electrical wires which connect the cryogenic mechanisms, calibration sources and temperature sensors of the cold optical bench with the warm electronics.
Cryotest facility at PSI equipped with the SYDERAL cables ready for cryogenic performance testing (Image: MIRI)

JWST – un télescope sanglé sur un siège suisse

Les campagnes de tests cryogéniques et sous vide du spectrographe proche infrarouge (NIRSpec) de WST ont été entreprises dans les installations de test de l’IABG en Allemagne. – Cette photo montre des ingénieurs de l’IABG soulevant le couvercle d’une caisse de transport contenant NIRSpec. Les ressorts, dans des sacs avec du ruban adhésif rouge, séparent les deux structures de transport APCO et isolent la caisse NIRSpec des vibrations et des chocs pendant le transport. – Le NIRSpec lui-même peut être vu enveloppé dans une isolation multicouche grise semblable à une feuille d’aluminium.

WST’s Near InfraRed Spectrograph (NIRSpec) cryogenic and vacuum test campaigns were undertaken at the IABG test facility in Germany. This shot shows engineers at IABG lifting the cover off a transport crate containing NIRSpec. The springs, in bags with red tape on them, separate the two APCO transport structures and isolate the NIRSpec box from vibrations and shock during transport. NIRSpec itself can be seen wrapped in grey foil-like multilayer insulation. – Photo : EADS Astrium

[Courrendlin, December 22, 2021, rke. English below.]
Après mes 33 lancements sur site au pied des fusées, je suis toujours bloqué en Suisse en raison de la Covid-19, je dois publier mes news au pays. Le lancement du JWST est toujours prévu ce samedi 25 décembre à 13h20 (heure suisse) de Kourou en Guyane française. Le père Noël fera-t-il un cadeau aux astronomes ?

Photo du haut : déploiement des coiffes suisse de RUAG laissant entrevoir le JWST – © ESA

Claude Nicollier (au centre) et Didier Manzoni à sa droite lors du show JWST le 17 décembre 2021 au Musée des transports de Lucerne. – Photo : rke

Interview exclusive (II)
avec Didier Manzoni
directeur de la division Espace d’APCO Technologies à Aigle

À travers son « Centre d’excellence » innovant, APCO Technologies réalise l’ensemble des moyens transversaux, des conteneurs de transport et des équipements de manutention des modules de propulsion ainsi que du composite d’un lanceur.  Qu’en est-il du JWST ? Interview avec Didier Manzoni, directeur d’APCO Technologies à Aigle.

Monsieur Manzoni, comment votre entreprise a-t-elle réussi à avoir le mandat de l’ESA pour ce projet de JWST ?
Comme on livre aussi bien des systèmes pour les satellites que pour les lanceurs, il allait de soi que nous puissions avoir un mandat pour le JWST. Comme c’est une mission de l’ESA et que notre pays y participe grâce au Swiss Space Office (SSO), on a décroché le contrat après avoir répondu à plusieurs appels d’offres.

APCO a fourni un adaptateur et un collier de serrage à très haute résistance utilisés pour sécuriser le JWST

Quel élément précisément de JWST avez-vous monté à Aigle ?
En ce qui concerne les moyens sols, nous avons livré un adaptateur et un collier de serrage à très haute résistance qui ont été utilisés pour sécuriser JWST durant tous ses essais et ses opérations au sol. Nous avons aussi livré des équipements permettant de monter l’instrument NIRSpec et enfin nous avons livré la structure d’interface de ce même instrument NIRspec. Il y aura de l’APCO Technologies en orbite sur JWST.

À Aigle, vous avez des halles de 16’000 m2, c’est très grand. Comment sont acheminés les éléments de satellite ou de lanceur ?
En camion par la route et l’autoroute. Le matériel est logé dans des conteneurs spécifiques escortés par la police. Par exemple, les conteneurs contenant les coiffes d’Ariane peuvent partir sur le Rhin et aller jusqu’à Brême. D’autres conteneurs partent pour Toulouse ou à Friedrichshafen chez Airbus ou à Cannes chez Thales. Le transport final d’un satellite se fait généralement par avion-transport jusqu’à Kourou.

Quelle difficulté pouvez-vous rencontrer lors du transport de l’un de vos satellites ?
On a des spécifications qui indiquent les efforts qui doivent être appliqués pendant le voyage en avion, dans le bateau et sur les routes. On doit s’assurer qu’il n’y aura aucun problème durant toutes les étapes du transport. Soit entre APCO et le maître d’œuvre (Airbus, Thales,…), soit de l’endroit où le satellite est terminé jusqu’à Kourou.

Après JWST, qu’avez-vous dans le pipeline… quels mandats ?
Le plus gros projet actuel, c’est Ariane 6. On a livré tous les moyens sols importants pour Ariane Group et pour le Centre National d’Études Spatiales (CNES). On livre les parties hautes et basses des moteurs auxiliaires.
Pour garantir des cadences de production élevées, nous avons spécialement développé et déployé des compétences « Industrie 4.0 » en investissant dans un tout nouvel atelier de production pour fabriquer des lots importants de sous-ensembles pour le lanceur Ariane 6.Nous avons aussi livré des équipements permettant de monter l’instrument NIRSpec et enfin nous avons livré la structure d’interface

D’autres projets en vue ?
Nous sommes aussi en charge du sous-système structures de plusieurs missions du programme Copernicus et de missions scientifiques ainsi que de projets commerciaux

JWST’s Near InfraRed Spectrograph (NIRSpec).  © Airbus Defence and Space GmbH

NIRSPEC – LE SPECTROGRAPHE PROCHE INFRAROUGE SUR JWST
L’objectif scientifique principal de NIRSpec est de permettre de grands relevés spectroscopiques d’objets astronomiques, avec un accent particulier sur l’étude des galaxies lointaines. Cet objectif a présidé à la conception de ce spectrographe multi-objets, capable de mesurer simultanément les spectres de 200 objets dans un champ de vision de 3,4 minutes d’arc × 3,6 minutes d’arc. NIRSpec comprend également cinq fentes fixes et une unité de champ intégrale qui fournissent les spectres de sources ponctuelles et d’objets étendus, respectivement. Six grilles fournissent une spectroscopie à haute résolution (λ/Δλ=R=1400-3600) et à moyenne résolution (R=500-1300) sur la gamme de longueurs d’onde de 0,7 µm – 5 µm, tandis qu’un prisme permet une spectroscopie à plus basse résolution (R=30-300) sur la gamme de 0,6 µm – 5 µm.

NIRSpec a été construit par l’industrie européenne selon les spécifications de l’ESA et géré par le projet JWST de l’ESA à l’ESTEC, aux Pays-Bas. Le maître d’œuvre est Airbus Defence and Space à Ottobrunn, en Allemagne. Les sous-systèmes du détecteur NIRSpec et du réseau de micro-obturateurs sont fournis par le Goddard Space Flight Center (GSFC) de la NASA.

  • Prochaine News : coordination zurichoise pour MIRI
Mission accomplished. The final taping of the protective cover is applied and the James Webb Space Telescope NIRSpec instrument is in its final flight configuration and ready to go back into the Integrated Science Instrument Module. – From left to right: Ralf Ehrenwinkler (Airbus DS), Frank Merkle (Airbus DS), Kai Hoffmann (Airbus DS), Robert Eder (Airbus DS), Max Speckmaier (Airbus DS) and Maurice te Plate (ESA). – Photo : NASA / C. Gunn

A Telescope Strapped Over a Swiss Seat

Exclusive interview
with Didier Manzoni
Director of the Space Division of APCO Technologies
in Aigle (near Lausanne), West of Switzerland

Through its innovative « Center of Excellence », APCO Technologies produces all the transverse means, transport containers and handling equipment for the propulsion modules and the composite of a launcher. What about the JWST? Interview with Didier Manzoni, director of APCO Technologies in Aigle.

Mr. Manzoni, how did your company manage to get the mandate from ESA for this JWST project?
Since we deliver systems for satellites as well as for launchers, it was obvious that we could get a mandate for the JWST. Since this is an ESA mission and our country is participating through the Swiss Space Office (SSO), we were awarded the contract after having responded to several calls for tender.

What precisely is the JWST component you have assembled in Aigle?
In terms of ground facilities, we delivered an adapter and a very high strength clamp that were used to secure JWST during all its tests and ground operations. We also delivered equipment to mount the NIRSPEC instrument and finally we delivered the interface structure of the same NIRSPEC instrument. There will be APCO Technologies in orbit on JWST.

In Aigle, you have 16’000 m2 halls, it’s very big. How are the satellite or launcher components transported?
By truck via the road and highway. The equipment is housed in specific containers escorted by the police. For example, the containers containing the Ariane covers can leave on the Rhine and go as far as Bremen. Other containers go to Toulouse or to Friedrichshafen at Airbus or to Cannes at Thales. The final transport of a satellite is usually by airlift to Kourou.

What difficulties might you encounter when transporting one of your satellites?
We have specifications that indicate the forces that must be applied during the trip by plane, in the ship and on the roads. We have to make sure that there will be no problems during all stages of the transport. Either between APCO and the prime contractor (Airbus, Thales,…), or from where the satellite is completed to Kourou.

  • Next News : Zurich coordination for MIRI

NIRSPEC
THE NEAR-INFRARED SPECTROGRAPH ON JWST
The primary science goal for NIRSpec is to enable large spectroscopic surveys of astronomical objects with a particular focus on the study of distant galaxies. It has driven the design of this multi-object spectrograph, which is capable of measuring the spectra of up to 200 objects simultaneously in a 3.4 arcminute × 3.6 arcminute field of view. NIRSpec also includes five fixed slits and an integral field unit that provide spectra of point-like sources and of extended objects, respectively. Six gratings provide high-resolution (λ/Δλ=R=1400-3600) and medium-resolution (R=500-1300) spectroscopy over the wavelength range of  0.7 µm – 5 µm, while a prism yields lower-resolution (R=30-300) spectroscopy over the range 0.6 µm – 5 µm.

NIRSpec has been built by European industry to ESA’s specifications and managed by the ESA JWST Project at ESTEC, the Netherlands. The prime contractor is Airbus Defence and Space in Ottobrunn, Germany. The NIRSpec detector and micro-shutter array subsystems are provided by NASA’s Goddard Space Flight Center (GSFC).

Artist rendering of the James Webb Space Telescope Near-InfraRed Spectrograph (NIRSpec) instrument. This figure shows the path followed by light from an astronomical object as it travels through the NIRSpec components and onto the detector.

Pour gérer au mieux ces News et vous informer de manière concise et conviviale, faites-moi un don !

To better manage this News and inform you in a concise and user-friendly way, please make a donation!

Ponctuel
Mensuellement
Annuellement

Faire un don ponctuel

Faire un don mensuel

Faire un don annuel

Choisir un montant

€5,00
€15,00
€100,00
€5,00
€15,00
€100,00
€5,00
€15,00
€100,00

Ou saisir un montant personnalisé


Votre contribution est appréciée.

Votre contribution est appréciée.

Votre contribution est appréciée.

Faire un donFaire un don mensuelFaire un don annuel